
CS 294 Lecture 4 (9/23/16)
Professor: Umesh Vazirani
Scribe: Jeffrey Epstein

Quantum Techniques for Classical Functions

Suppose that we would like to know something about a “classical” function f : X → Y . We’ve seen that we
can construct two natural unitary operators from f :

Uf :|x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f(x)〉
(−1)f :|x〉 7→ (−1)f(x)|x〉.

(1)

We can actually build the second operator from the first and some elementary gates by first applying Uf ,
then applying a phase gate to the second register (Z if Y = {0, 1}), and then applying Uf again. An appli-
cation of Uf is called a query of an oracle, and in this context we’re often interested in the minimum number
of queries needed to answer some question about f .

A naive hope is that we can learn a lot about f with a single call to the oracle, say by feeding it the
uniform superposition over inputs:

|X|−1/2
∑
x∈X
|x〉 ⊗ |0〉 Uf7−→ |X|−1/2

∑
x∈X
|x〉 ⊗ |f(x)〉. (2)

Now we’ve evaluated f on all possible inputs, or taken all possible paths through the computation, or com-
puted in parallel universes, or something! But to get any information out, we have to make a measurement,
and the amount of information we can extract is limited1. The simplest thing we could do is to measure
both registers in the computational basis. Then we get the state |x〉|f(x)〉 with probability 1/ |X|. This is
even worse than the classical strategy of feeding each value of x to the oracle one at a time to learn the
whole function, since we might end up with redundant outcomes. Any hope for a quantum speedup can’t
depend on this technique.

Instead of this generally fruitless approach, we can identify two useful techniques:

1. Project onto a level set of f by measuring the output register:

∑
x∈X

αx|x〉 ⊗ |0〉
Uf7−→

∑
x∈X

αx|x〉 ⊗ |f(x)〉 Πa7−→

 ∑
x∈X:f(x)=a

|αx|2 ,
∑

x∈X:f(x)=a

αx|x〉 ⊗ |a〉

 (3)

where the notation {pi, |ψi〉} refers to the ensemble of preparing state |ψi〉 with probability pi. The
states are left unnormalized for compactness.

2. Imprint f on an input state via a phase factor:∑
x∈X

αx|x〉
(−1)f7−→

∑
x∈X

αx(−1)f(x)|x〉 (4)

where here for simplicity Imf = {0, 1}.

Lower Bound on Quantum Search Query Complexity

Can we use quantum mechanics to speed up the process of searching for a marked element in a set? One way
to formalize this question is to consider a discrete set X and the maps fa : X 7→ {0, 1} where fa(x) = δa(x)
for a ∈ X, i.e. the indicator functions on the one-element subsets of X (we’ll assume exactly one element is
marked). If we’re given a black box that can evaluate fa on inputs x ∈ X, the search problem becomes the

1Holevo’s theorem makes this precise.
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problem of determining a, and we’d like a lower bound on the number of times we have to use the black box
(query the oracle) to get a correct answer with high probability.

Classically, each call to the oracle takes an input x and gives us f(x), so all we can do is repeatedly
ask whether the statement a = a′ is true for different values of the guess a′ ∈ X. We might get lucky and
get f(a′) = 1, i.e. a′ = a the first time. But we might get unlucky and run through all |X| possible inputs
before hitting on the right answer. Therefore O(|X|) is a lower bound for the number of calls to the oracle
we have to make (in the worst case). Another way to see this is to note that the random variable encoding
the value of a has Shannon entropy log |X| (assuming a is drawn uniformly at random) and the random
variable fa(x) has entropy

H =
1

|X|
log |X|+ |X| − 1

|X|
log

|X|
|X| − 1

. (5)

For |X| � 1, this goes as log |X| / |X|, indicating that we need at least O(|X|) calls to the oracle to get all
of the information about a.

In the quantum setting, the oracle should become a unitary operator. Let {ψx}x∈X be an orthonormal
set of states spanning some Hilbert space H1, and let H2 be some other finite-dimensional Hilbert space.
For some function f : X 7→ {0, 1}, define

Uf : ψx ⊗ φ 7→ ψx ⊗Wf(x)φ (6)

where W0 and W1 are unitary operators on H2. This definition extends by linearity to a unique unitary
operator on H1 ⊗ H2, i.e. on the input register and any ancilla system we might want to include in the
computation:

Uf =
∑
x∈X

Πx ⊗Wf(x) (7)

where Πx is the projector onto the subspace of H1 spanned by ψx. If we let H2 = C2, W0 = 1, and W1 = X,
then we have

Uf : ψf ⊗ |0〉 7→ ψf ⊗ |f(x)〉. (8)

Preparing the state ψf ⊗ |0〉, applying Uf , and measuring the ancilla qubit is then equivalent to querying a
classical oracle for f , so this is an appropriate generalization of the classical problem. Equivalently, we could
see the classical problem as adding to the quantum problem the restriction that we’re only allowed to apply
Uf to basis states ψf as opposed to arbitrary superpositions.

In this framework we can ask how many calls to a quantum oracle (applications of Uf ) we need to de-
termine a, given that we’re promised f = fa for some a ∈ X and can apply any unitary operation we like.
The strategy of the proof of the lower bound will be to note that we want to be able to distinguish the
output of the algorithm in the cases f = fa and f = fb, given that a 6= b and to try to upper bound the
norm distance between these two states by some quantity depending on the number of calls to the oracle.

Theorem 1. Any quantum algorithm that can reliably distinguish fa from fb for any a, b ∈ X, a 6= b must

involve O(|X|1/2) queries.

Proof. The output of an algorithm that uses t calls to the oracle may be represented as

ψout = VtUfVt−1Uf . . . V1Ufψ (9)

where we’re free to choose the input state ψ and the unitary gates Vi. These choices specify the algorithm.
We can bound the difference ∆out between the output states of this algorithm in the cases f = fa and f = fb
by imagining comparing the outputs of the algorithm using Ufa for all queries except the last, which uses
Ufb , then the outputs of the algorithm that calls Ufa for all but the last two and the algorithm that calls Ufa
for all but the last, and so on. This is the “hybrid argument” mentioned in lecture. Formally, it amounts to
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repeated application of the triangle inequality for norms. For compactness, I’ll write Ua = Ufa :

‖∆out‖ = ‖VtUaVt−1Ua . . . V1Uaψ − VtUbVt−1Ub . . . V1Ubψ‖

≤ ‖VtUaVt−1Ua . . . V2UaV1Uaψ − VtUaVt−1Ua . . . V2UaV1Ubψ‖
+ ‖VtUaVt−1Ua . . . V2UaV1Ubψ − VtUaVt−1Ua . . . V2UbV1Ubψ‖

+ . . .

+ ‖VtUaVt−1Ub . . . V2UbV1Ubψ − VtUbVt−1Ub . . . V2UbV1Ubψ‖

= ‖Uaψ − Ubψ‖
+ ‖UaV1Ubψ − UbV1Ubψ‖

+ . . .

+ ‖UaVt−1Ub . . . V2UbV1Ubψ − UbVt−1Ub . . . V2UbV1Ubψ‖

= ‖Uaψ(0) − Ubψ(0)‖+ ‖Uaψ(1) − Ubψ(1)‖+ . . .+ ‖Uaψ(t−1) − Ubψ(t−1)‖

=

t−1∑
i=0

‖Uaψ(i) − Ubψ(i)‖.

(10)

The first inequality is the triangle inequality, the following equality is due to the unitary invariance of the
norm, and the next is just the introduction of some notation. Now we can apply the Cauchy-Schwarz
inequality to find:

‖∆out‖2 =

(
t−1∑
i=0

‖Uaψ(i) − Ubψ(i)‖

)2

≤ t
t−1∑
i=0

‖Uaψ(i) − Ubψ(i)‖2. (11)

Now suppose that we draw a, b ∈ X uniformly and independently at random. The expectation of the norm
difference squared is then:

E
[
‖∆out‖2

]
≤ t

|X|2
∑
a,b∈X

t−1∑
i=0

‖Uaψ(i) − Ubψ(i)‖2

=
t

|X|2
t−1∑
i=0

∑
a,b∈X

‖
∑
y∈X

(
Πy ⊗Wδa(y) −Πy ⊗Wδb(y)

)
ψ(i)‖2

=
t

|X|2
t−1∑
i=0

∑
a,b∈X

‖Πa ⊗ (W1 −W0)ψ(i) −Πb ⊗ (W1 −W0)ψ(i)‖2

≤ t

|X|2
t−1∑
i=0

∑
a,b∈X

(
‖Πa ⊗ (W1 −W0)ψ(i)‖2 + ‖Πb ⊗ (W1 −W0)ψ(i)‖2

)

=
t

|X|2
t−1∑
i=0

(∑
b∈X

‖
∑
a∈X

Πa ⊗ (W1 −W0)ψ(i)‖2 +
∑
a∈X
‖
∑
b∈X

Πb ⊗ (W1 −W0)ψ(i)‖2
)

=
t

|X|2
t−1∑
i=0

(∑
b∈X

‖1⊗ (W1 −W0)ψ(i)‖2 +
∑
a∈X
‖1⊗ (W1 −W0)ψ(i)‖2

)

≤ t

|X|2
t−1∑
i=0

(4 |X|+ 4 |X|)

=
8t2

|X|
.

(12)
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Here we’ve used the Pythagorean theorem to pull sums inside norms. The first inequality is due to the
fact that the terms in the double sum with a = b actually vanish. The triangle inequality and the unitary
invariance of the norm give the second inequality. From this result we can conclude that there is some pair
of elements a, b ∈ X for which

‖∆out‖ ≤
2
√

2t

|X|1/2
. (13)

If ψa and ψb are the outputs of the algorithm given that f = fa and f = fb, respectively, then

‖∆out‖ = ‖ψa − ψb‖ = 〈ψa − ψb, ψa − ψb〉 ≥ 2− 2 |〈ψa, ψb〉| . (14)

Then there are some pair of choices a, b ∈ X such that the fidelity between the two output states is lower
bounded:

|〈ψa, ψb〉| ≥ 1−
√

2t

|X|1/2
. (15)

Therefore we need t = O(|X|1/2) for the fidelity to be close to zero, i.e., for the two output states to be
distinguishable with high probability. In more operational terms, if you give me a family of algorithms with

that uses fewer than O(|X|1/2) queries, then for large |X|, I can choose to mark an item x ∈ X that you
will, at least almost half of the time, fail to identify correctly.

This quantum lower bound of O(|X|1/2) is better than the classical lower bound of O(|X|1/2). We’ll see
in a bit that there is in fact an algorithm that achieves the quantum lower bound, so quantum mechanics
does offer some speedup. Usually, we think of X = {0, 1}n, so that |X| = 2n. Then in terms of n, we have
O(2n/2) instead of O(2n). In terms of n, both lower bounds are exponential, so the quantum speedup isn’t
quite the miracle we hoped.

Elitzur-Vaidman Bomb Detector

The Elitzur-Vaidman bomb detection experiment imagines a scenario in which we need to determine whether
or not a bomb is a dud. The catch - the working bombs have such sensitive triggers that any interaction with
the bombs (i.e., any attempt to measure them) will set them off. Can we safely conclude one way or the other?

To answer this question, we’ll have to make some kind of model of the situation. Let’s say the bomb is
a qubit (it could also be taken here just to be a classical bit) which is either in the state |0〉 (a dud) or
the state |1〉 (a live bomb). To capture the notion of a measurement setting off a live bomb, we’ll do the
following: suppose that we take an ancilla qubit initialized in the state |0〉, perform a CNOT from the bomb
to the ancilla, and then measure the ancilla. If we measure 0, then the bomb is a dud, and we’re safe. If we
measure 1, then the bomb was functional, and we consider that our lab has been blown up.

Clearly this approach doesn’t satisfy our desire for a safe procedure, since any time we find that the bomb
is live, we also set it off. But consider the following circuit:

|0〉 Rπ/2M • · · · Rπ/2M •
|b〉 • · · · •

|0〉 |0〉

There are M applications of the basic unit of rotation, CCNOT, and measurement, and Rπ/2M is a rotation
by π

2M in the |0〉− |1〉 plane, i.e. the unitary operator exp(iπX/2M), with X = |0〉〈1|+ |1〉〈0|. Let’s examine
what happens in the two cases:

Case 1: The bomb is a dud, and b = 0. In this case, none of the CCNOT gates are performed, so the
only action of the circuit is to perform a rotation by π/2 on the first qubit. Then we will always measure
the first qubit to be in the state |1〉. Since the bit flip is never applied to the ancillae qubits, we measure all
of them to be in the state |0〉, and no explosion occurs.
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Case 2: The bomb is live, and b = 1. If any of the ancilla measurements yields |1〉, the bomb deto-
nates, so we’re only interested in the case in which all of these measurements yield |0〉. Since the CNOT
(the second C in CCNOT is always on) decoheres the first qubit, we can think of it as being probabilistically
flipped back and forth from |0〉 to |1〉 as each unit of the circuit is applied (from the point of view of the
first qubit, the CNOT is a measurement). The probability of a bit flip is sin2(π/2M). So the probability
that no bit flip occurs, which is the same as the probability that no CNOT is ever applied, and thus that no
ancilla measurement causes an explosion, is cos2M (π/2M). This probability goes to 1 as M → ∞ (it takes
M = 123 to achieve a probability of greater than 98%). For large M , cos2M (π/2M) ≈ 1 − π2/4M . Note
that in this case, we also measure the first qubit to be in the state |0〉.2

Since this protocol, with high probability (1−O(1/M)), gives us a way to determine if the bomb is live or
not (by checking the outcome of the measurement of the first qubit) without setting off an explosion, it is
a safe bomb detection test of the kind we wanted. Whether this model captures the fundamental nature of
the question is a question for another time. For a start, is conditioning on the state of the bomb something
that can be done “without interacting” with it? This thought experiment is often discussed in the context
of quantum optics, and that may be a more compelling analogue from this point of view.

Grover’s Algorithm

Suppose we’re given a black box/oracle of the type described above that evaluates a function f : {0, 1}n →
{0, 1}, and promised that there is a unique a ∈ {0, 1}n such that f(a) = 1. Grover’s algorithm for finding
this value of a is implemented by the following circuit:

|0〉⊗n H⊗n Re Ru · · · Re Ru

where the gates Re and Ru are the unitary operators defined by

Re :|x〉 7→ (−1)δa(x)|x〉
Ru :|k〉f 7→ −(−1)δ0(k)|k〉f

(16)

where |x〉 are the computational basis elements (this is the basis we’re measuring in) and |k〉f are the ele-

ments of the Fourier basis, i.e. |k〉f = H⊗n|k〉. The block consisting of the two R gates is repeated O
(
2n/2

)
times. We’ve seen that Re can be implemented with two calls to the oracle.

So why does this circuit do what is claimed? Consider the two-dimensional subspace of the 2n-dimensional
Hilbert space spanned by |a〉 and |u〉 = H⊗n|0〉⊗n = |+〉⊗n = |0〉k. In this subspace, define

|e〉 =
(1− |a〉〈a|)|u〉√
〈u|(1− |a〉〈a|)|u〉

(17)

so that |a〉 and |e〉 form an orthonormal basis. In this subspace, Re performs a reflection across the line
spanned by |e〉, and Ru performs a rotation across the line spanned by |u〉. Recall that the composition of
two reflections is a rotation by twice the angle between the two axes of reflection. In this case, the angle is

cos θ = 〈u|e〉 =
〈u|(1− |a〉〈a|)|u〉√
〈u|(1− |a〉〈a|)|u〉

=
√
〈u|(1− |a〉〈a|)|u〉 =

√
2−n

∑
x,y∈{0,1}n

〈x|(1− |a〉〈a|)|y〉

=

√
2−n

∑
x,y,z∈{0,1}n;z 6=a

〈x|z〉 〈z|y〉 =

√
2−n

∑
x∈{0,1}n;x 6=a

1 =

√
2n − 1

2n
=
√

1− 2−n.

(18)

2Turning this thought experiment on its head, we can think about trying to “freeze” the first qubit in the state |0〉 even
while successive rotations are applied. This analysis shows that a way to do this is by making measurements between each
rotation, with the probability of successful freezing going to one as the measurements become more and more frequent. This is
the quantum Zeno effect.
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Rearranging, we find sin θ = 2−n/2. For n � 1, then θ ≈ 2−n/2. Since for large n, we also have |u〉 ≈ |e〉,
after O

(
2n/2

)
applications of the two rotation gates, we will have rotated the input state |u〉 by an angle

of O(1) towards |a〉. Then measuring in the computational basis, with high probability we get the outcome
a. If we demand that we rotate by exactly π/2, so that we always measure outcome a, we’ll have to be
slightly more careful about keeping constant multiplicative factors around, and to be really careful we should
remember that the unitary Re required two calls to the oracle. But this doesn’t change the scaling behavior,
so is irrelevant from a complexity point of view.
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